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Abstract

A set of necessary conditions for the choice of diffusion gradient vectors to make the linear equations nonsingular for the esti-
mation of the diffusion matrix are given in a coordinate free manner. The conditions assert that the initial step in the design of a DTI
experiment with six or more acquisitions must be to select six valid diffusion gradients first and then add new ones.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

One way of estimating the diffusion matrix from DTI
experiments is to solve a set of linear equations. The
number of the measurements and thus the number of
the equations is generally chosen to be over determined
to alleviate the effects of noise. First pointed out by Pap-
adakis et al. [1] and later used by different researchers
[2–4] the linear algebraic technique can be described as
follows. To estimate d = [d1,d2,d3,d4,d5,d6]

T, six entries
of the diffusion matrix corresponding to

D ¼
d1 d4 d6

d4 d2 d5

d6 d5 d3

2
64

3
75

one has to solve one of the following equations depend-
ing on the number of acquisitions denoted by m̂:

bV gd ¼ p̂ or ð1Þ
bV T

g V gd ¼ V T
g p̂: ð2Þ
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The scalar factor b is d2ðD� 1
3
dÞ, where c is the gyro-

magnetic ratio, d is the length of and D is the time be-
tween the rectangular diffusion gradient pulses in the
pulsed gradient spin echo (PGSE) experiment. The re-
sult of the experiment is kept in a vector
p̂ ¼ �c�2½lnðŜ1S0Þ � � � lnð

Ŝm̂
S0
Þ�T, where Ŝi is the measurement

corresponding to the ith diffusion gradient and S0 is
the reference image. Define a nonlinear function w that
maps the diffusion gradient vector gi ¼ ½gix giy giz� in R3,
to a vector in R6

wðgiÞ ¼ g2ix g2iy g2iz 2gixgiy 2giygiz 2gixgiz
� �

;

then Vg is the m̂� 6 matrix

V g ¼

wðg1Þ
..
.

wðgmÞ

2
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¼

g21x g21y g21z 2g1xg1y 2g1yg1z 2g1xg1z

..

. ..
. ..

. ..
. ..

. ..
.

g2m̂x g2m̂y g2m̂z 2gm̂xgm̂y 2gm̂ygm̂z 2gm̂xgm̂z

2
664

3
775:

ð3Þ
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If the number of acquisitions is equal to six, d (thus
D) is estimated by using Eq. (1), otherwise if the number
of acquisitions is larger than six, m̂ > 6, the expression
of Eq. (2) is used. It is a standard fact from linear alge-
bra [5] that in either case Vg must be full rank for the
equations to have a unique solution. When m̂ ¼ 6, Vg

is a (6 · 6) square matrix and the rank condition is
equivalent to the invertibility of Vg. In the case m̂ > 6
the rank condition guarantees the invertibility of the
Gram matrix V T

g V g.
Note that in Eq. (3) there is no restriction on the

norm of gradient vectors, they might or might not be
unit vectors.
2. Necessary conditions for gradient vectors

By definition (Eq. (3)) Vg is a m̂� 6 matrix. The pre-
vious section shows that in the case m̂ > 6 the Gram ma-
trix of Eq. (2) will be invertible if and only if Vg has a
6 · 6 submatrix which is invertible. This problem is
equivalent to first choosing six gradient vectors
g = {g1, . . . ,g6} such that the corresponding matrix Vg

will be full rank. There has to be six gradient vectors
guaranteeing the rank condition on Vg regardless of
the number of aquisitions, m̂ P 6.

It is stated without proof in [1,6–11] that for the
equations to have a unique solution ‘‘the only require-
ment is that the six gradient vectors not all lie in the
same plane and no two gradient vectors are collinear.’’1

The statement is in fact only a necessary condition and is
not complete. To see this note that neither any pair of
the six gradient vectors given below are pointing to the
same direction nor all six of them belong to the same
two dimensional subspace and yet when Vg is calculated
by Eq. (3)

g1
g2
g3
g4
g5
g6

2
666666664

3
777777775
¼

1 1 1

0 1 0

0 0 1

1 1
2

0

0 1 1

1 0 �1

2
666666664

3
777777775
; V g ¼

1 1 1 2 2 2

0 1 0 0 0 0

0 0 1 0 0 0

1 1
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1 0 1 0 0 �2
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ð4Þ
its determinant |Vg| = 0, i.e., Vg is not full rank.

As a preliminary to the problem in R3 take a look at
the problem in R2. The gradients and the corresponding
matrix Vg are
1 The term collinear is ambiguous. In a point space two points or
the tips of two vectors are always collinear. It is clear to say no two
vectors point to the same direction or belong to the same one
dimensional subspace. Similarly, instead of the term coplanar, it is
precise to say the vectors belong to a two dimensional subspace.
g1
g2
g3

2
64

3
75 ¼

g1x g1y
g2x g2y
g3x g3y

2
64

3
75; V g ¼

g21x g21y 2g1xg1y
g22x g22y 2g2xg2y
g23x g23y 2g3xg3y

2
64

3
75:

A straightforward calculation shows that the determi-
nant of Vg is given by the product of the determinants of
the pairs of gradient direction vectors:

DetðV gÞ ¼ 2
g1x g1y
g2x g2y

�����
�����
g1x g1y
g3x g3y

�����
�����
g2x g2y
g3x g3y

�����
�����: ð5Þ

The necessary and sufficient condition for nonsingu-
larity in R2 is clear:

Vg is nonsingular if and only if no pair of gradient vec-

tors are pointing to the same direction.

In R3, there is unfortunately no clear formula like
Eq. (5) to describe the determinant of Vg that relates
it to the diffusion gradients. The formula for the deter-
minant can be obtained by direct calculation. For this
remember that the number of three element subsets of

{1,. . .,6} is
6
3

� �
¼ 20. Let Cr = {i, j,k} � {1, . . . , 6}

denote rth of these subsets with ordered elements i.e.,
i < j < k. Denote the complement of Cr by
{l,m,n} = {1, . . . , 6}n{i, j,k}. Define

aði; j; kÞ ¼
gix giy giz
gjx gjy gjz
gkx gky gkz

�������

�������
then the determinant is

DetðV gÞ ¼
X20
r¼1

ð�1Þðiþjþkþ1ÞaðCrÞ

�
glx gly
gmx gmy

�����
�����
glx gly
gnx gny

�����
�����
gmx gmy
gnx gny

�����
�����gizgjzgkz:

It follows immediately from the formula that ‘‘a nec-
essary condition for nonsingularity is that there exists at
least one triplet of linearly independent gradient vec-
tors.’’ Otherwise a (Cr) = 0 for all r 2 {1,. . .,20} which
implies Det (Vg) = 0. This is equivalent to say that not
all six gradient vectors belong to the same two-dimen-
sional subspace. This condition will be absorbed in
(NC3) described below.

It is clear from the definition of Vg that if there exists
a 2 R such that for i „ j, gi = agj then w (gi) = a2w (gj)
and Vg will be singular. The first necessary condition
for the nonsingularity of Vg is therefore:

(NC1) No two gradient vectors should point to the

same direction.

Without loss of generality let g4,g5,g6 be linearly
dependent without violating (NC1). This implies that
there exists a1,a2 „ 0 such that g6 = a1g4 + a2g5.

A direct calculation shows

DetðV gÞ ¼ �8a1a2að1; 2; 3Það1; 4; 5Það2; 4; 5Það3; 4; 5Þ:
ð6Þ



Fig. 1. An example violating (NC2), g1,g2,g3 are linearly dependent as
well as g4,g5,g6.
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One of the conditions this equation brings up is
that g1,g2,g3 should be linearly independent: (see
Fig. 1)

(NC2) If there is a triplet of vectors belonging to a two

dimensional subspace that conform to (NC1), the remain-

ing triplet should be linearly independent.

In addition Eq. (6) indicates that none of the vec-
tors g1,g2,g3 should belong to the two-dimensional
subspace spanned by g4,g5. To investigate this assume
that four of the gradient vectors belong to the same
two-dimensional subspace and are (NC1), say
g3,g4,g5,g6. This means that there exists
a11,a12,a21,a22 „ 0 such that Det[aij] „ 0 with g5 =
a11g3 + a12g4 and g6 = a21g3 + a22g4. A straightforward
calculation shows that

a21a22ðwðg5Þ � a11wðg3Þ � a12wðg4ÞÞ
¼ a11a12ðwðg6Þ � a21wðg3Þ � a22wðg4ÞÞ:

The rows of Vg corresponding to those directions are
linearly dependent. Therefore:

(NC3) No four gradient vectors should belong to the

same two dimensional subspace.

Notice that all of the conditions above are de-
scribed in a coordinate free manner, since being an
element of a subspace and linear independence are
in fact properties that are independent of coordinate
frame. This important fact provides the possibility of
constructing different valid gradient sets starting from
one set by means of nonsingular linear
transformations.

It is crucial to note that the conditions are only nec-
essary and are not necessary and sufficient.
3. Conclusion

In any DTI experiment where the diffusion matrix is
to be estimated completely (i.e., all six elements), the ini-
tial step must be to choose six diffusion gradients that
will make the corresponding Vg invertible. This skeleton
gradients guarantee that the addition of more diffusion
gradients or more acquisitions to the experiment will
be safe. The earlier condition given in [6] that requires
not all of the gradients to be in the same subspace, is
not complete. Interested reader is encouraged to do
the calculations for the following set of gradients with
unit norm to see that although the number of acquisi-
tions is larger than six and that not all of the gradients
are in the same two-dimensional subspace, still the sys-
tem of linear equations Eq. (2) does not posses a unique
solution:
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:

ð7Þ
Moreover, there is no six element subset of these gra-

dients which makes the corresponding square Vg

invertible.
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